

ACOUSTIC TEST REPORT

FIXTURE DATA

Manufacturer: Clay Paky s.r.l.

Fixture model: ORKIS CYC

Serial number: AX292185

Date: 2024-01-05

TESTING ENVIRONMENT

The acoustic testing took place within an EMC Phonometric chamber situated at Clay Paky's laboratory (Via Pastrengo, 3/b – 24068 Seriate (BG) – ITALY).

To assess the acoustic pressure produced by the fixture, four acoustic analyzers have been employed. The selected model is as follows:

ACOUSTIC ANALYZER

Manufacturer: NTi Audio AG

Model: XL2 (s/n 6086)

Calibration

due date: 2024-07-25

The fixture is centrally located within the EMC Phonometric chamber, with one microphone positioned to its left, one to its right, one in front, and one behind it.

The environmental conditions inside the semi-anechoic chamber were as described below:

EMC PHONOMETRIC CHAMBER

Temperature: 22,7°C

Humidity: 41.5% ±0.6%

Air pressure: 997 mbar ±00.6 mbar

Indoor noise: 20,7 dBA

The temperature within the EMC Phonometric chamber was assessed utilizing the following thermometer:

THERMOMETER

Manufacturer: Lutron electronic enterprise Co., LTD.

Model: TM-947 SD (s/n I.413577)

Calibration

due date: 2024-03-08

The measurements were taken after leaving the projector on for about 15 minutes at full power (RAW).

ACOUSTIC TEST REPORT

The fixture was positioned within the EMC phonometric chamber, with four tripods strategically placed at each side, accommodating a microphone for each orientation: one in front, one behind, one to the right, and one to the left, all positioned at 1 meter distance and at a height of 1.5 meters.

TEST'S SETUP

TEST RESULT

TEST CONDITIONS		
Measurement distance:	1 m	
Measurement height:	1.5 m	

FAN MODE	Noise [dB]	
Standard	24.2	
Silent	22.7	
Fanless	21.2	
Background	20.7	

EMC PHONOMETRIC CHAMBER VALIDATION

Clay Paky's EMC Phonometric chamber and testing methodology was tested and validated by TÜV SÜD (ACU1480091418_signed_rev1).

The purpose of the test was to validate the measurement of background noise within the EMC Phonometric chamber. Multiple measurements were taken at different locations within the chamber to establish a comprehensive profile of the internal background noise.

Test location and test equipment used					
DEVICE N°	DESIGNATION	MODEL	MANUFACTURER		
ACQ 08	Acquisition system	Apollo	Sinus		
MIC 01	Microphone	378B02	PCB Piezotronics		
MIC 02	Microphone	378B02	PCB Piezotronics		
MIC 03	Microphone	378B02	PCB Piezotronics		
MIC 04	Microphone	378B02	PCB Piezotronics		
CAL 06	Calibrator	4228	Brül & Kjær		
45_TIG	Themo Hygrometer Barometer	Tinytag View 2 TV-5400	Gemini Data Logger		

The determination of uncertainty factors was conducted in accordance with "Accuracy method" based on IEC Guide 115. The level of risk to false accept and false reject items is described on ILAC-G8.

Declared uncertainties are obtained with factor k = 2 except if otherwise specified. For a 95% confidence level, the measurement uncertainties for defined system are:

TEST NAME	MEASUREMENT UNCERTAINTY
T. amb	± 2.6 °C
R.H. amb	± 06%
Determination of the background noise	
in the EMC Phonometric chamber	± 0.5 dB

The following were the environmental conditions within the EMC Phonometric chamber:

ENVIRONMENTAL CONDITIONS	
Ambient temperature:	23.6 °C ±2.6 °C
Relative humidity:	41.0% ±0.6%
Air pressure:	998 mbar ±00.6 mbar

Therefore, the average background noise in the EMC Phonometric chamber is:

CONDITIONS	Min	AVERAGE	MAX
Inside the room while the office is operational, and			
machineries are turned on	20.8 dB	22.8 dB	26.7 dB
Inside the room while office is enerational and			
Inside the room while office is operational, and machineries are turned off	19.0 dB	20.1	21.5 dB
Inside the room while the office is operational with			
average noise generated	24.3 dB	25.3 dB	26.1 dB